

General Purpose Inverter IMASTER E1

The Controlling Solution of Powerful Inverter Brand

15021-88406044 09106611367
WWW.LSKALA.COM

ADT's Technology for the Best

High performance inverter for efficient business design

CONTENTS

IMASTER E1 Series with Powerful Control Solution

| Excellent Applicability to Various Loads |
| Easy Maintenance \& Simple Repair |
| High Reliability \& Durability |
I Compliance with RoHS |
I Lower Audible Noise I

Clean Power ADT Inverter

For the highest quality, for the highest customer satisfaction

 IMASTER E1ADT iMaster E1's series inverter with high durability, elaborate speed controllability and excellent torque responsibility provides superb operability.

The iMaster E1's compact size and sensorless vector control technology provide perfectly optimized performance for industrial equipment.

Certificates of international standards (CE, UL / cUL) of iMaster E1 series make its applications ready for global business.
\qquad
ication

WWW.LSKALA.COM 021-88406044 09106611367

Features

- Improved Control Performance

High Torque Performance in Ultra Low Speed Zone by Using Sensorless Vector Control

- ADT's advanced sensorless vector control technology provides a motor with high torque performance in ultra low speed zone (Sensorless vector control: above 150% at 1 Hz).
- In case of fast acceleration / deceleration of motor, iMaster E1 series provides powerful torque controllability without trip.
- Sensorless vector control technology expands the range of controlling speed.

Superb Speed Control Performance by Improved Tuning Technology for Motors

- Through technology of compensating the motor time constant while motor tuning minimizes the speed change, stable motor opeation can be achieved.

Intensified Protective Functions for Safety while Running

- Ground fault protection can prevent accidents.
- Countermeasure for output's phase loss protects motor while running.

Built-in Regenerative Braking System

- BRD is basically equipped with the inverter so that the easy operation for acceleration / deceleration time is achieved without additional options.
- Driving performance of acceleration and deceleration maximizes efficiency.

Enhanced Flexibility for Various Loads

- Provided various control function (3-Wire, Local / Remote control etc.)
- Built in PID function uniformly controls oil pressure and flow quantity without additional options.
- Improved torque characteristic, which is reduced to the 1.7 th power, perfectly fits with loads for fans and pumps.
- Optimized energy saving according to the characteristics of loads is achieved.

Various Inverter Display Functions

- The operational status of the inverter are displayed on the monitor so that an user can understand the condition of the inverter.
- Cumulative hours of driving time and the actual running time are displayed for easy maintenance.

Convenient Maintenance and Repair

- iMaster E1 is available to replace the fan without separation.
- Fan on / off function increases fan's durability and minimizes fan's noise.

Various Load Compatibility

Fan \& Pump

- Air Conditioning \& Dust Collecting Fan
- Energy saving by selecting torque characteristic of a load
- Restart function in case of momentary power interruption
- Factory automation by PLC
- Machine protection by soft start / stop
- Auto operation by precise PID control function (sleep \& wake up function)
- Low noise operation
- Quick responsiveness to load change by frequency jump and multi speed operation

- Cooling Tower

- Stable operation by supplying high qualified energy
- Energy saving by speed and torque control

Conveyor \& Transport Machine

- Conveyor
- Multi relay output terminal
- Accurate acceleration \& deceleration
- Overweight prevention by using over-torque signal
- Prevention of load slippage by curve acceleration and deceleration
- Factory Automation
- Factory automation with PLC
- High speed torque response to prevent slip down
- Soft start and stop

Textile Machine

- Spinning Machine

- Soft start / stop for prevention of snap and cut off - Unit design for tough circumstances (dust, cotton) - Improvement of product quality by stable operating speed

Washing Machine

- Washing Machine
- Powerful torque boost function
- Over torque limit function
- Separate setting of acceleration and deceleration time
- Built-in regenerative braking unit (below 22 kW)
- Soft start / stop

Specifications

- 220 V 1-Phase / 3-Phase

- 440 V 3-Phase

Inverter model (E1-미디)		004HF	007HF	015HF	022HF	037HF	$\begin{aligned} & \text { 055HF/ } \\ & 075 \mathrm{HFP} \end{aligned}$	$\begin{aligned} & \text { 075HF/ } \\ & \text { 110HFP } \end{aligned}$	$\begin{aligned} & \text { 110HF/ } \\ & 150 \mathrm{HFP} \end{aligned}$	$\begin{aligned} & \text { 150HF/ } \\ & \text { 185HFP } \end{aligned}$	$\begin{aligned} & 185 \mathrm{HF/} \\ & 220 \mathrm{HFP} \end{aligned}$	$\begin{aligned} & 220 H F / \\ & 300 H F P \end{aligned}$
Max. Available motor (4P, kW)	Heavy Duty	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11.0	15.0	18.5	22.0
	Normal Duty	-	-	-	-	-	7.5	11.0	15.0	18.5	22.0	30.0
Rated Capacity (kVA)	Heavy Duty	1.5	2.8	4	6	7.6	10.0	13.3	19.1	26.6	31.6	37.4
	Normal Duty	-	-	-	-	-	12.5	18.2	24.1	30.7	35.7	47.3
Rated Input AC Voltage		3-Phase 380-480 V $\pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$										
Rated Output Voltage		3-Phase 380-480 V (Depend on receiving voltage)										
Rated Output Current (A)	Heavy Duty	1.8	3.4	4.8	7.2	9.2	12	16	23	32	38	45
	Normal Duty	-	-	-	-	-	15	22	29	37	43	57
Brake	Recover Brake	Built in Brake Circuit (Need to additional brake resistor)										
	Resistance (Ω)	180	180	180	100	100	70	50	50	30	20	20
Weight (kg)		0.98	0.98	0.98	0.98	1.2	4.2	4.5	4.5	7.0	7.0	7.5
Enclosure		IP20										

- 440 V 3-Phase

Inverter model (E1-매미)		$\begin{aligned} & 300 \mathrm{HF} / \\ & 370 \mathrm{HFP} \end{aligned}$	$\begin{aligned} & 370 \mathrm{HF} / \\ & 450 \mathrm{HFP} \end{aligned}$	$\begin{aligned} & \text { 450HF/ } \\ & 550 H F P \end{aligned}$	$\begin{aligned} & 550 \mathrm{HF} / \\ & 750 \mathrm{HFP} \end{aligned}$	$\begin{aligned} & \text { 750HF/ } \\ & 900 H F P \end{aligned}$	$\begin{aligned} & 900 \mathrm{HF} / \\ & 1100 \mathrm{HFP} \end{aligned}$	$\begin{array}{\|l\|} \hline 1100 H F / \\ \text { 1320HFP } \end{array}$	$\begin{aligned} & \text { 1320HF/ } \\ & 1600 \mathrm{HFP} \end{aligned}$	$\begin{aligned} & 1600 H F / \\ & 2000 H F P \end{aligned}$	$\begin{aligned} & \text { 2200HF/ } \\ & \text { 2500HFP } \end{aligned}$	$\begin{array}{\|l\|} \hline 2800 H F / \\ 3200 H F P \end{array}$	$\begin{aligned} & 3500 \mathrm{HF} / \\ & 3800 \mathrm{HFP} \end{aligned}$
Max. Available motor (4P, kW)	Heavy Duty	30	37	45	55	75	90	110	132	160	220	280	350
	Normal Duty	37	45	55	75	90	110	132	160	200	250	320	375
Rated Capacity (kVA)	Heavy Duty	48.2	62.4	74.8	91.5	123.9	146.3	180.4	216.2	230	315	400	500
	Normal Duty	58.1	70.1	87.2	112	133	162	191	245	285	360	470	550
Rated Input AC Voltage		3-Phase 380-480 V $\pm 10 \%$, $50 / 60 \mathrm{~Hz} \pm 5 \%$											
Rated Output Voltage		3-Phase 380-480 V (Depend on receiving voltage)											
Rated Output Current (A)	Heavy Duty	58	75	90	110	149	176	217	260	300	415	525	656
	Normal Duty	70	85	105	135	160	195	230	285	370	450	600	680
Brake	Recover Brake	Need to Setup Recover Brake Unit											
	Resistance (Ω)	Refer to Option Table											
Weight (kg)		22	22	27	30	50	50	60	60	110	110	170	170
Enclosure		IP00											

- Standard 200 V, 400 V Class

Dimensions

- E1-004SF/007SF, E1-004LF/007LF/015LF

[Unit: mm]
- E1-015SF/022SF, E1-022LF, E1-004HF/007HF/015HF/022HF

- E1-037LF/HF

- E1-055LF/055HF, E1-075LF/075HF, E1-110LF/110HF

- E1-150LF/150HF,

E1-185LF/185HF, E1-220LF/220HF

[Unit: mm]

- E1-450HF, E1-550HF

- E1-300HF, E1-370HF

[Unit: mm]
- E1-750HF, E1-900HF

[Unit: mm]

omand

Dimensions

- E1-1100HF, E1-1320HF

E1-2800HF, E1-3500HF

Terminal Functions

Main Circuit Terminal Arrangement

Main Circuit Terminal Block	Corresponding Type		Screw Size	Widih (mm)
R S RB P U V W	$\begin{aligned} & \text { E1-004SF } \\ & \text { E1-007SF } \end{aligned}$		M3	7.62
R S T RB P U V W	E1-004LF E1-007LF E1-015LF		M3	7.62
R S $R B$ P U V W	$\begin{aligned} & \text { E1-015SF } \\ & \text { E1-022SF } \end{aligned}$		M4	11
R S T RB P U V W	$\begin{aligned} & \text { E1-022LF } \\ & \text { E1- 03LLF } \\ & \text { E1-004HF } \\ & \text { E1-007HF } \end{aligned}$	$\begin{aligned} & \mathrm{E1}-015 \mathrm{HF} \\ & \mathrm{E1}-022 \mathrm{HF} \\ & \mathrm{E} 1-037 \mathrm{HF} \end{aligned}$	M4	11
	$\begin{aligned} & \text { E1-055LF } \\ & \text { E1-075LF } \\ & \text { E1-055HF } \end{aligned}$	$\begin{aligned} & \mathrm{E} 1-075 \mathrm{HF} \\ & \mathrm{E} 1-110 \mathrm{HF} \end{aligned}$	M4	10.6
	E1-110LF		M5	13
	$\begin{aligned} & \mathrm{E} 1-150 \mathrm{LF} \\ & \mathrm{E}-150 \mathrm{HF} \end{aligned}$	$\begin{aligned} & \mathrm{E} 1-185 \mathrm{HF} \\ & \mathrm{E} 1-220 \mathrm{HF} \end{aligned}$	M5	13
	$\begin{aligned} & E 1-185 L \mathrm{~F} \\ & E 1-220 \mathrm{~F} \end{aligned}$		M6	17
	$\begin{aligned} & \mathrm{E1}-300 \mathrm{HF} \\ & \mathrm{E1}-370 \mathrm{HF} \end{aligned}$		M6	17
	$\begin{aligned} & \mathrm{E} 1-450 \mathrm{HF} \\ & \mathrm{E} 1-550 \mathrm{HF} \end{aligned}$		M8	22
	$\begin{aligned} & \mathrm{E1}-750 \mathrm{HF} \\ & \mathrm{E} 1-900 \mathrm{HF} \end{aligned}$		M8	29
	$\begin{aligned} & \mathrm{E} 1-1100 \mathrm{HF} \\ & \mathrm{E} 1-1320 \mathrm{HF} \end{aligned}$		M10	30
	$\begin{aligned} & \mathrm{E} 1-1600 \mathrm{HF} \\ & \mathrm{E1}-2800 \mathrm{HF} \end{aligned}$	$\begin{aligned} & \text { E1-2200HF } \\ & \text { E1-3500HF } \end{aligned}$	M10	38

- Explanation of Main Circuit Terminals

Symbol	Terminal Name	
R, S, T (L1, L2, L3)	Main Power	Connect input power.
$\mathrm{U}, \mathrm{V}, \mathrm{W}(\mathrm{T} 1, \mathrm{~T} 2, \mathrm{T3})$	Inverter Output	Connect 3-phase motor.
PD, P(+1, +)	DC Reactor	After removing the short bar between PD and P, connect DC reactor for improvement of power factor.
P, RB $(+, \mathrm{B}+)$	External Braking Resistor	Connect optional external braking resistor. (22 kW $\downarrow)$
P, N (+, -)	External Braking Unit	Connect optional external braking unit. (30 kW \uparrow)
G	Inverter Earth Terminals	Grounding terminal.

Terminal Functions

- Control Terminal Arrangement (004-022SF / 004-037LF/HF)

※ 1st Communication (RS485) is default option.
but, 2nd Communication ($\mathrm{R}+, \mathrm{R}$-) and Safety function (SC, S2, S1) are optional. Contact to ADT.

| $\mathrm{RS}-485$ | | | |
| :--- | :--- | :--- | :--- | :--- |
| | ALO | AL 1 | AL 2 |

- Explanation of Control Circuit Terminals

Signal	Symbol	Terminal Name			Explanation of Content
Input Signal ${ }^{1)}$	P24	Power Terminal for Input Signal			$24 \mathrm{VDC} \pm 10 \%, 35 \mathrm{~mA}$
	$\begin{aligned} & 6 \text { (RS) } \\ & 5 \text { (AT) } \\ & 4 \text { (CF2) } \\ & 3 \text { (CF1) } \\ & 2 \text { (RV) } \\ & 1 \text { (FW) } \end{aligned}$	Intelligent Input Terminal: Forward Direction (FW), Reverse Direction (RV), Multi-speed 1-4 (CF1-4), 2-Level Accel / Decel Command (2CH), Reset (RS), Free-run Stop (FRS), External Trip (EXT), Soft Lock (SFT), Jogging Run (JG), Unattended Start Protection (USP) ${ }^{2)}$, Analog Input Voltage / Current Transferring (AT), Reset (RS), Start (STA), Stop (STP), FW / RV (F/R), Remote UP / DOWN, Local Keypad Operation (O/R), Local Terminal Input Operation (T/R) ,PID Integral Reset (PIDIR), PID Disable (PIDD)			Contact input: Close: On (run) Open: Off (stop) Minimum on time: over 12 ms
	CM1	Common Terminal for Input or Monitor Signal			
Monitor Signal	FM	Output Frequency Meter, Output Current Meter, Output Voltage Meter, Output Wattage Meter			Analog voltage output
Frequency Setup Signal	H	Power Supply for Frequency Command			10 VDC
	0	Voltage Frequency Command Terminal			0-10 VDC, input impedance $50 \mathrm{k} \Omega$
	Ol	Current Frequency Command Terminal			4-20 mA, input impedance 200Ω
	L	Common Terminal for Frequency Command			
Output Signal ${ }^{3)}$	$\begin{aligned} & 11 \\ & 12 \\ & \mathrm{CM} 2 \end{aligned}$	Intelligent Output Terminal: Running Signal (RUN), Frequency Arrival Signal (at the set frequency) (FA1), Frequency Arrival Signal (at or above the set frequency) (FA2), Overload Advanced Notice Signal (OL), Output Deviation of PID Signal (OD), Alarm Signal (AL)			24 VDC, 50 mA Max.
Trip Alarm Output Signal ${ }^{4)}$	ALO AL1 AL2	Alarm Output Signal: at Normal Operation, Power Off (Initial Condition): AL0 - AL2 Closed at Abnormal: ALO - AL1 Closed	AL1		Rated value for contact: AC 250 V 2.5 A (resisitive load) 0.2 A (induced load) DC 30 V 3.0 A (resisitive load) 0.7 A (induced load)

※ 1) Input signal terminals from 1 to 6 are contact "a"s.
When you want to change those terminals to contact "b"s, configuration should be set in C07-C12.
2) USP: Protects inverter from restarting when power supply is on.
3) Intelligent output terminal 11 \& 12 is "a" contact. When you use $11 \& 12$ as "b" contact, please set it to C16, C17.
4) Operator can select 'pre-warning alarm for overload' and 'arrival to the predefined frequency' signals with the intelligent output terminal.

- Control Terminal Arrangement (055-220LF / 055-3500HF)

- Explanation of Control Circuit Terminals

Signal	Symbol	Terminal Name	Explanation of Content
Input Signal ${ }^{11}$	P24	Power Terminal for Input Signal	$24 \mathrm{VDC} \pm 10 \%, 35 \mathrm{~mA}$
	$\begin{aligned} & 6 \text { (RS) } \\ & 5 \text { (AT) } \\ & 4 \text { (CF2) } \\ & 3 \text { (CF1) } \\ & 2 \text { (RV) } \\ & 1 \text { (FW) } \end{aligned}$	Intelligent Input Terminal: Forward Direction (FW), Reverse Direction (RV), Multi-speed 1-4 (CF1-4), 2-Level Accel / Decel Command (2CH), Reset (RS), Free-run Stop (FRS), External Trip (EXT), Soft Lock (SFT), Jogging Run (JG), Unattended Start Protection (USP) ${ }^{2)}$, Analog Input Voltage / Current Transferring (AT), Reset (RS), Start (STA), Stop (STP), FW/RV (F/R), Remote UP / DOWN, Local Keypad Operation (O/R), Local Terminal Input Operation (T/R), PID Integral Reset (PIDIR), PID Disable (PIDD)	Contact input: Close: On (run) Open: Off (stop) Minimum on time: over 12 ms
	CM1	Common Terminal for Input or Monitor Signal	
Monitor	FM	Output Frequency Meter, Output Current Meter, Output Voltage Meter, Output Wattage Meter	Analog voltage output
Signal	AMI	Output Frequency Meter, Output Current Meter, Output Voltage Meter, Output Wattage Meter	Analog current output
Frequency Setup Signal	H	Power Supply for Frequency Command	10 VDC
	0	Voltage Frequency Command Terminal	$0-10 \mathrm{VDC}$, input impedance $10 \mathrm{k} \Omega$
	Ol	Current Frequency Command Terminal	4-20 mA, input impedance 200 S
	L	Common Terminal for Frequency Command	
Output Signal ${ }^{3)}$	RNO RN1 RN2 RN3	Intelligent Output Terminal: Running Signal (RUN), Frequency Arrival Signal (at the set frequency) (FA1), Frequency Arrival Signal (at or above the set frequency) (FA2), Overload Advanced Notice Signal (OL), Output Deviation of PID Signal (OD), Alarm Signal (AL)	Rated value for contact: AC 250 V 2.5 A (resisitive load) 0.2 A (induced load) DC 30 V 3.0 A (resisitive load) 0.7 A (induced load)
Trip Alarm Output Signal ${ }^{4)}$	ALO AL1 AL2	Alarm Output Signal: at Normal Operation, Power Off (Initial Condition): AL0-AL2 Closed at Abnormal: ALO - AL1 Closed	

[^0]
Connecting Diagram

- Terminal Connecting Diagram (004-022SF / 004-037LF/HF)

Terminal Name	$1,2,3,4,5,6$, P24, FM	$\mathrm{H}, \mathrm{O}, \mathrm{Ol}$
Common	CM1	L

- Terminal Connecting Diagram (055-220LF / 055-3500HF)

AD IIMASTER E1

WWW.LSKALA.COM 021-88406044 09106611367

Connection to PLC

- Connection with Input Terminals

Sink Type

- Using Interface Power Inside Inverter

- Using External Power

※ 004-022SF, 004-037LF/HF Model is not applicable.

Source Type

- Using Interface Power Inside Inverter

- Using External Power

Operations

- Operations

Run lamp

Light is on when the inverter is generating PWM output or RUN command is entered.

Power lamp

Lamp for the controlling power

Display (LED signal)

Displays frequency, motor current, motor rotational number, alarm setting

Run key

Run the inverter. RUN key is disabled when the inverter is selected to run by terminal. RUN key is available only while the above LED is on.

Function key

Command selecting function.

Up/Down key

Increase / Decrease frequency value, and modify set values

PRG lamp

Light is on when the value is entering

Hz/ A lamp

Show whether the displayed data is frequency value or data current value.

Stop / Reset key

Stop operating inverter and cancellation of alarm (available in both sides of operator and terminal) When the inverter is run through b15 terminal, operator can select valid or invalid state.

Volume key

Set output frequency.
(available only when the lamp is on)

Store key

Store the selected data or the set value.

[^1]
Operations

- Standard Operator Setting

- Display Running Frequency

Protective Functions

- Error Codes

Name	Description	Display on Digital Operator	
Over-current	When the inverter output is short circuited or motor shaft is locked, excessive current for the inverter flows. To protect inverter from excessive current, inverter output is turned off by operating current protection circuit.		E04

Function Lists (004-022SF / 004-037LF/HF)

- Monitor Modes (d-group) \& Basic Setting Modes (F-group)

Main Function	Code	Function Name	Description	Initial Data	Change Mode on Run
Basic Monitor	d01	Output Frequency Monitor	$0.00-400.0 \mathrm{~Hz}$ ("Hz"LED on)		
	d02	Output Current Monitor	0.0-99.9 A ("A"LED on)		
	d03	Output Voltage Monitor	Output voltage display [V]		
	d04	Motor Rotational Direction Monitor	" F ": Forward direction, " r " : Reverse direction, "O": Stop		
	d05	PID Feedback Monitor	Display PID feedback value [\%]		
	d06	Terminal Input Monitor	Display the state of Intelligent input terminal display		
	d07	Terminal Output Monitor	Display the state of intelligent input terminal and alarm output terminals		
	d08	Frequency Conversion Monitor	0-99.99 / 100.0-400.0 (= d01 x b14)		
	d09	Power Consumption Monitor	0-9999 [W]		
	d10	Cumulative Time Monitor During RUN (Hr)	0-9999 [Hr]		
	d11	Cumulative Time Monitor During RUN (Min)	0-59 [Min]		
	d12	DC Link Voltage Monitor	0-999 [V]		
	d13	Trip Monitor	Displays the details of the last trip		
	d14	Trip Monitor 1	Display the details for the last 1 protective trip		
	d15	Trip Monitor 2	Display the details for the last 2 protective trips		
	d16	Trip Monitor 3	Display the details for the last 3 protective trips		
	d17	Trip Counter	Display the number of inverter trips		
Basic Setting	F01	Output Frequency Setting	0.00-400.0 [Hz]	0.00 Hz	\bigcirc
	F02	Accelerating Time Setting 1	$0.1-3000$ [sec]	10.0 sec	\bigcirc
	F03	Decelerating Time Setting 1	$0.1-3000$ [sec]	10.0 sec	\bigcirc
	F04	Driving Direction Selection	0 --- forward/1 --- reverse	0	X

- Expanded Function A Mode

| Main Function | Code | Function Name | Description | Initial Data | Change Mode on Run |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | A01 | Frequency Setting Method
 (Multi-speed Setting) | 2: Standard poperator
 3: Remote operator (1st Comm-R455 connector)
 4: Remote operator (2nd Comm-terminal strip) | | |

Function Lists (004~022SF / 004~037LF/HF)

- Expanded Function A Mode

Main Function	Code	Function Name	Description	Initial Data	Change Mode on Run
AVR Related Setting	A52	AVR Selection	0: Always ON / 1: Always OFF 2: OFF only when deceleration	2	X
	A53	Motor Voltage Capacity	$\begin{aligned} & 200 / 220 \text { / } 230 \text { / } 240 \text { (200 V class) } \\ & 380 / 400 / 415 / 440 / 460 / 480 \text { (400 V class) } \end{aligned}$	220 V / 380 V	X
2nd Accel / Decel Related Functions	A54	2nd Acceleration Time	0.1-3000 [sec]	10.0 sec	\bigcirc
	A55	2nd Deceleration Time	0.1-3000 [sec]	10.0 sec	0
	A56	2 Level Accel. / Decel. Switching Method Setting	0 : Input from terminal [2CH] 1: Switching frequency setting from acc / dec1 to acc / dec2	0	X
	A57	Frequency Setting for Accel. / Decel. Time Switching in Acceleration ${ }^{11}$	0.00 - Maximum frequency (A04) [Hz]	0.00 Hz	X
	A58	Frequency Setting for Accel. / Decel. Time Switching in Acceleration ${ }^{1)}$	0.00 - Maximum frequency (A04) [Hz]	0.00 Hz	X
	A59	Acceleration Pattern Selection	0: Linear / 1: S-curve / 2: U-curve	0	X
	A60	Deceleration Pattern Selection	0: Linear / 1: S-curve / 2: U-curve	0	X
Other Functions	A61	Voltage Input (0) Offset Setting	-10.0-10.0 [\%]	0.0	\bigcirc
	A62	Voltage Input (O) Gain Setting	0.0-200.0 [\%]	100.0	\bigcirc
	A63	Current Input (OI) Offset Setting	-10.0-10.0 [\%]	0.0	\bigcirc
	A64	Current Input (OI) Gain Setting	0.0-200.0 [\%]	100.0	\bigcirc
	A65	FAN Setting	0 : Always ON / 1: ON only when RUN	0	X
PID Control Setting	A70	PID Function Selection	0 : PID control disable 1: PID control enable 2: F/F control enable	0	X
	A71	PID Reference	0.00-100.0 [\%]	0.00 \%	\bigcirc
	A72	PID Reference Source	0: Keypad potentiometer 1: Control terminal input 2: Standard operator (A71) 3: Remote operator (communication)	2	X
	A73	PID Feed-back Source	0 : Current input (OI) 1: Voltage input (O)	0	X
	A74	PID P Gain	0.1-1000 [\%]	100.0 \%	\bigcirc
	A75	PID I Gain	0.0-3600 [sec]	1.0 sec	\bigcirc
	A76	PID D Gain	0.00-10.00 [sec]	0.00 sec	\bigcirc
	A77	PID Error Limit	0.0-100.0 [\%]	100.0 \%	0
	A78	PID Output High Limit	-100.0-100.0 [\%]	100.0 \%	\bigcirc
	A79	PID Output Low Limit	-100.0-100.0 [\%]	0.00 \%	0
	A80	PID Output Reverse	0 : PID output reverse disable 1: PID output reverse enable	0	X
	A81	PID Scale Factor	0.1-1000 [\%]	100.0 \%	x
	A82	Pre PID Frequency	0.00 - Max frequency (A04) [Hz]	0.00 Hz	X
	A83	Sleep Frequency	0.00 - Max frequency (A04) [Hz]	0.00 Hz	X
	A84	Sleep Delay Time	0.0-30.0 [sec]	0.0 sec	X
	A85	Wake up Frequency	Sleep frequency (A83) - Max frequency (A04) [Hz]	0.00 Hz	X

※ 1) If acceleration time and deceleration time is less than 1 second, an error occurs on the switching frequency.

- Expanded Function b Mode

Main Function	Code	Function Name	Description	Initial Data	Change Mode on Run
Restart Related Functions	b01	Instant Restart Selection	0 : Alarm after trip / 1: Start from 0 Hz when restart 2: Start from predefined frequency when restart 3: Stop by decelerating from predefined frequency when restart	0	X
	b02	Allowable Restart Time ${ }^{\text {1) }}$	$0.3-1.0 \mathrm{sec}(0.1 \mathrm{sec}$ unit)	1.0 sec	X
	b03	Instant Restart Waiting Time	$0.3-10.0 \mathrm{sec}$ (0.1 sec unit)	1.0 sec	X
Electric Thermal Related Functions	b04	Electronic Thermal Level	Set electronic thermal level in 20-120 \% of inverter rated current.	100.0 \%	X
	b05	Electronic Thermal Characteristic Selection	0 : Cooling fan is mounted on the motor shaft (self-cool) 1: Cooling fan is powered by independent source (forcectcool)	1	X
Overload Limiting Related Functions	b06	Overload and Over-voltage Limiting Mode	1: Overload, over-voltage restriction mode OFF 2: Overload limiting mode ON 3: Over-voltage limiting mode ON 4: Overload, over-voltage limiting mode ON	3	X
	b07	Overload Limiting Level Setting	Set overload limiting level in 20-200\% of rated current.	180 \%	X
	b08	Overload Limiting Constant Setting	$0.1-10.0 \mathrm{sec}$ (0.1 unit)	1.0 sec	X
Other Functions	b09	Soft-lock Selection	0-3 (refer to instruction manual)	0	x
	b10	Start Frequnecy Adjustment	$0.50-10.00[\mathrm{~Hz}]$	0.50 Hz	X
	b11	Carrier Frequency	$3.0-16.0$ [kHz]	5.0 kHz	0
	b12	Initialization Mode	0: Initialization of trip data / 1: Data initialization	0	X
	b13	Select Initial Value	0: for Korea / 1: for Europe / 2: for USA	0	X
	b14	RPM Conversion Factor Setting	0.01-99.99 (0.01 unit)	1.00	0
	b15	Stop Key Enable	0: Stop enable / 1: Stop disable	0	X
	b16	Stop Operation	0 : Restart from 0 Hz 1: Restart from predefined frequency	0	X
	b17	Communication	Set inverter communication code from 1-32 when connect inverter with external control equipment	1	X
	b18	Ground Fault Detection	0 : No detection	0	X
	b19	Speed Search Current Suppression Level	90-180 [\%]	100 \%	\bigcirc
	b20	Voltage Increase Level During Speed Search	10-300 [\%]	100 \%	0
	b21	Voltage Decrease Level During Speed Search	10-300 [\%]	100 \%	\bigcirc
	b22	Speed Decrease Level During Speed Search	1-200 [\%] (operator display: $10-2000$)	$100 \%(1,000)$	\bigcirc
	b23	Frequency Match Operation Selection	0: 0 Hz Starting operation 1: Frequency matching \& Start operation	0	\bigcirc
	b24	Fault Relay Configuration	0 : Inactive incase of low voltage failure 1: Active in case of voltage failure (inactive in case of restart mode) 2: Active in case of all failure occurred indude IV failure 3: Active in case of voltage failure (in case of low voltage failure, automatic restart).	0	O
	b25	Stop Method Selection	0 : A normal decelerating stop 1: Free-run stop	0	\bigcirc
	b27	Input Phase Loss Protection	0: Input phase loss protection disable 1: Time setting: 1-100 (sec)	10	O
	b28	Communication Time Out Setting	0-60 [sec] / 0: No detect time out	0	\bigcirc
	b29	Communication Time Out Operation Mode	0 : Always active / 1: Active in case of inverter is running	0	\bigcirc
	b30	Display Code Setting	1-13	1	\bigcirc
	b31	2nd Communication Channel (option) Baud Rate Setting	$\begin{aligned} & \text { 1: 2,400 [bps] / 2: 4,800 [bps] } \\ & \text { 3: } 9,600[\mathrm{bps}] ~ 4: 19,200[\mathrm{bps}] \end{aligned}$	3	O
BRD Function	b32	BRD Selection	0 : Invalid: BRD doesn't operate 1: BRD operate during run 2: BRD operate during run \& stop	1	X
	b33	BRD Using Ratio	0.0~50.0 [\%]	10.0 \%	X

[^2]
Function Lists (004-022SF / 004-037LF/HF)

- Expanded Function C Mode

Main Function	Code	Function Name	Description		Initial Data	Change Mode on Run
Input Terminal Setting	C01	Intelligent Input Terminal 1 Setting	0: FW (forward direction) 1: RV (reverse direction) 2: CF1 (multi-speed 1) 3: CF2 (multi-speed 2) 4: CF3 (multi-speed 3) 5: CF4 (multi-speed 4) 6: JG (jogging run) 8: 2CH (2-level accel / decel command) 9: FRS (free-run stop) 10: EXT (external trip) 11: USP (unattended start protection) 12: SFT (soft lock)	13: AT (analog input voltage / current transferring) 14: RS (reset) 15: STA (start) 16: STP (stop) 17: F/R (forward / reverse) 18: Remote Control UP 19: Remote Control DOWN 20: Local Keypad Operation (O/R) 21: Local Terminal Input Operation (T/R) 22: PID Integral Reset (PIDIR) 23: PID Disable (PIDD)	0	X
	C02	Intelligent Input Terminal 2 Setting	(Code)-Same as C01		1	X
	C03	Intelligent Input Terminal 3 Setting	(Code)-Same as C01		2	X
	C04	Intelligent Input Terminal 4 Setting	(Code)-Same as C01		3	X
	C05	Intelligent Input Terminal 5 Setting	(Code)-Same as C01		13	X
	C06	Intelligent Input Terminal 6 Setting	(Code)-Same as C01		14	X
Input Terminal Status Setting	C07	Contact Setting of a/b of Input Terminal 1 (NO / NC)	Set contacts of a/bof intelligent input terminal 1 0 : a contacts (normal open) [NO] 1: b contacts (normal close) [NC]		0	X
	C08	Contact Setting of a / of Input Terminal 2 (NO/NC)	Set contacts of a / b of intelligent input terminal 2		0	x
	C09	Contact Setting of a / bof Input Terminal 3 (NO/NC)	Set contacts of a/b of intelligent input terminal 3		0	X
	C10	Contact Setting of a / of Input Terminal 4 (NO/NC)	Set contacts of a/b of intelligent input terminal 4		0	X
	C11	Contact Setting of a / of Input Terminal 5 (NO/NC)	Set contacts of a/b of intelligent input terminal 5		0	X
	C12	Contact Setting of a / bof Input Terminal 6 (NO/NC)	Set contacts of a/b of intelligent input terminal 6		0	X
Output Terminal Function	C13	Intelligent Terminal Relay Output Setting	0 : RUN (Run signal) 1: FA1 (Frequency arrival signal: Command arrival) 2: FA2 (Frequency arrival signal: Setting frequency or more) 3: OL (Overload advance notice signal) 4: OD (Output deviation for PID control) 5: AL (Alarm signal)		5	X
	C14	Intelligent Open Collector Output 11 Setting			1	X
	C15	Intelligent Open Collector Output 12 Setting			0	X
	C16	Output Terminal $11 \mathrm{a} / \mathrm{b}$ Contact Setting	0 : a contact (normal open) [NO] 1: b contact (normal close) [NC]		0	X
	C17	Output Terminal $12 \mathrm{a} / \mathrm{b}$ Contact Setting			0	X
	C18	Monitor Signal Selection	0: Output frequency monitor 1: Output current monitor 2: Output voltage monitor		0	X
	C19	Analog Meter Gain Adjustment	0-250.0 [\%]		100.0 \%	\bigcirc
	C20	Analog Meter Offset Adjustment	-3.0-10.0 [\%]		0.0 \%	0
	C21	Overload Advance Notice Signal Level Setting	0.5* (inverter rated current) - 2.0* (inverter rated current)		100.0 \%	X
	C22	Acceleration Arrival Signal Frequency Setting	0.00 - Max frequency (A04) [Hz]		0.00 Hz	X
	C23	Deceleration Arrival Signal Frequency Setting	0.00 - Max frequency (A04) [Hz]		0.00 Hz	X
	C24	PID Deviation Level Setting	0.0-100.0 [\%]		10.0 \%	X

- Motor Constant Setting H Mode

Main Function	Code	Function Name	Description	Initial Data	Change Mode on Run
	H01	Auto-tuning Mode	0: Auto-tuning OFF 1: Auto-tuning ON (non-ratational mode)	0	X
	H02	Selection Motor Constant	0: Standard mode data 1: Auto-tuning data	0	X
Motor Constant Setting	H03	Motor Capacity	$00.4 \mathrm{~L}: 220 \mathrm{~V} / 0.4 \mathrm{~kW}$ $00.7 \mathrm{~L}: 220 \mathrm{~V} / 0.75 \mathrm{~kW}$ 01.5 L: $220 \mathrm{~V} / 1.5 \mathrm{~kW}$ 02.2 L: $220 \mathrm{~V} / 2.2 \mathrm{~kW}$ 03.7 L: 220 V / 3.7 kW 05.5 L: $220 \mathrm{~V} / 5.5 \mathrm{~kW}$ 00.4 H: $380 \mathrm{~V} / 0.4 \mathrm{~kW}$ $00.7 \mathrm{H}: 380 \mathrm{~V} / 0.75 \mathrm{~kW}$ $01.5 \mathrm{H}: 380 \mathrm{~V} / 1.5 \mathrm{~kW}$ $02.2 \mathrm{H}: 380 \mathrm{~V} / 2.2 \mathrm{~kW}$ $03.7 \mathrm{H}: 380 \mathrm{~V} / 3.7 \mathrm{~kW}$ $05.5 \mathrm{H}: 380 \mathrm{~V} / 5.5 \mathrm{~kW}$	-	X
	H04	Motor Pole Selection	2/4/6/8 poles (P)	4	X
	H05	Motor Rated Current	0.1-50.0 A	-	X
	H06	Motor No-load Current lo	0.1-50.0 A	-	X
	H07	Motor Rated Slip	0.01-10.0 \%	-	X
	H08	1st Resistor R1 for Motor Constant	Setting range: $0.001-30.00 \Omega$	-	X
	H09	Overloaded Inductance Lsig for Motor Constant	Setting range: $0.01-100.00 \mathrm{mH}$	-	X
	H10	R1 Auto-tuning Data for Motor Constant	Setting range: 0.001-30.00 Ω	-	X
	H11	Lsig Auto-tuning Data for Motor Constant	Setting range: $0.01-100.00 \mathrm{mH}$	-	X

Function Lists (055-220LF / 055-3500HF)

- Monitor Modes (d-group) \& Basic Setting Modes (F-group)

Main Function	Code	Function Name	Description	Initial Data	Change Mode on Run
Basic Monitor	d01	Output Frequency Monitor	$0.00-400.0[\mathrm{~Hz}]$ ("Hz"LED on)		
	d02	Output Current Monitor	0.0-999.9 [A] ("A"LED on)		
	d03	Output Voltage Monitor	Output voltage display [V]		
	d04	Motor Rotational Direction Monitor	$\begin{aligned} & \text { "F": Forward direction, } \\ & \text { "r": Reverse direction, } \\ & \text { "O": Stop } \end{aligned}$		
	d05	PID Feedback Monitor	Display PID feedback value [\%]		
	d06	Terminal Input Monitor	Display the state of Intelligent input terminal display		
	d07	Terminal Output Monitor	Display the state of intelligent input terminal and alarm output terminals		
	d08	Frequency Conversion Monitor	0-99.99 / 100.0-400.0 (= d01 x b14)		
	d09	Power Consumption Monitor	0-9999 [W]		
	d10	Cumulative Time Monitor During RUN (Hr)	0-9999 [Hr]		
	d11	Cumulative Time Monitor During RUN (Min)	0-59 [Min]		
	d12	DC Link Voltage Monitor	0-999 [V]		
	d13	Trip Monitor	Displays the details of the last trip		
	d14	Trip Monitor 1	Display the details for the last 1 protective trip		
	d15	Trip Monitor 2	Display the details for the last 2 protective trips		
	d16	Trip Monitor 3	Display the details for the last 3 protective trips		
	d17	Trip Counter	Display the number of inverter trips		\bigcirc
Basic Setting	F01	Output Frequency Setting	0.00-400.0[Hz]	0.00 Hz	
	F02	Accelerating Time Setting 1	$0.1-3000$ [sec]	30.0 sec	0
	F03	Decelerating Time Setting 1	0.1-3000 [sec]	30.0 sec	x
	F04	Driving Direction Selection	0 --- forward / 1 --- reverse	0	

Expanded Function A Mode

Main Function	Code	Function Name	Description	Initial Data	Change Mode on Run
Basic Setting	A01	Frequency Setting Method (Multi-speed Setting)	0 : Keypad potentiometer / 1: Control terminal input 2: Standard operator 3: Remote operator (1st Comm-RJ45 connector) 4: Remote operator (2nd Comm-terminal strip)	1	X
	A02	Run Setting Method	0 : Standard operator / 1: Control terminal input 2: Remote operator (1st Comm-RJ45 connector) 3: Remote operator (2nd Comm-terminal strip)	1	X
	A03	Base Frequency Setting	Set base frequency from 0 to max by 0.01 Hz unit	60.00 Hz	X
	A04	Maximum Frequency	Base frequency (A03) - $400[\mathrm{~Hz}]$ In SLV mode, Base frequency (A03)~300 [Hz]	60.00 Hz	X
Analog Input Setting (External Frequency Setting)	A05	External Frequency Start Value	0.00 - Maximum frequency (A04) [Hz]	0.00 Hz	X
	A06	External Frequency End Value	0.00 - Maximum frequency (A04) [Hz]	0.00 Hz	X
	A07	External Frequency Start Value Ratio	0-100 (0.1 \% unit)	0.0 \%	X
	A08	External Frequency End Ratio	0-100 (0.1 \% unit)	100.0 \%	X
	A09	External Frequency Start Selection	0 : Start from start frequency / 1: Start from 0 Hz	0	X
	A10	External Frequency Sampling	Set sampling number on analog input filter from 1 to 8.	4	X
Multilevel and Jogging Setting	A11 A25	Multi-speed Frequency	0.00 - Maximum frequency (A04) [Hz]	Speed1: 5 Hz Speed2: 10 Hz Speed3: 15 Hz Speed4: 20 Hz Speed5: 30 Hz Speed6: 40 Hz Speed7: 50 Hz Speed8: 60 Hz Other : 0 Hz	\bigcirc
	A26	Jogging Frequency	0.50-10.00 [Hz]	0.50 Hz	\bigcirc
	A27	Selection of Jogging Stop Operation	0: Free-run stop / 1: Stop by decelerating 2: Stop by DC braking	0	X
V/F Characteristic	A28	Torque Boost Selection	0: Manual / 1: Automatic	0	X
	A29	Manual Torque Boost	0.0-50.0 [\%]	1.0 \%	\bigcirc
	A30	Manual Torque Boost Frequency	Select frequency ratio out of base frequency from 0-100 \%.	10.0 \%	\bigcirc
	A31	Control Method	0 : Linear torque characteristic / 1: Reduced torque characteristic / 2: Sensorless vector control	0	X
	A32	Output Voltage Gain	20-110\%	100.0 \%	0
DC Braking Setting	A33	DC Braking Selection	0: Disabled / 1: Enabled	0	X
	A34	DC Braking Frequency	0.50-10.00 [Hz]	0.50 Hz	X
	A35	DC Braking Waiting Time	$0.0-5.0 \mathrm{sec}$ (0.1 sec unit)	0.0 sec	X
	A36	DC Braking Force	0-100\% (0.1 \% unit)	7-50 \% ${ }^{11}$	X
	A37	DC Braking Time	$0.0-10.0 \mathrm{sec}$ (0.1 sec unit)	0.0 sec	X
Frequency Related Setting	A38	Upper Limit of Frequency	A39-A04 Hz (0.01 Hz unit)	0.00 Hz	X
	A39	Lower Limit of Frequency	$0.00-$ A38 Hz (0.01 Hz unit)	0.00 Hz	X
	$\begin{aligned} & \text { A40 } \\ & \text { A42 } \\ & \text { A44 } \end{aligned}$	Frequency Jump	0.00 - Maximum frequency (A04) [Hz]	0.00 Hz	X
	$\begin{aligned} & \text { A41 } \\ & \text { A43 } \\ & \text { A45 } \end{aligned}$	Frequency Jump Width	0.00-10.00[Hz]	0.00 Hz	X

[^3]
Function Lists (055-220LF / 055-3500HF)

- Expanded Function A Mode

Main Function	Code	Function Name	Description	Initial Data	Change Mode on Run
AVR Related Setting	A52	AVR Selection	0: Always ON / 1: Always OFF 2: OFF only when deceleration	2	X
	A53	Motor Voltage Capacity	$\begin{aligned} & 200 \text { / } 220 \text { / } 230 \text { / } 240 \text { (200 V class) } \\ & 380 / 400 / 415 \text { / } 440 / 460 / 480 \text { (} 400 \mathrm{~V} \text { class) } \end{aligned}$	$\begin{aligned} & \text { LF: } 220 \mathrm{~V} \\ & \text { HF: } 380 \mathrm{~V} / 440 \mathrm{~V} \end{aligned}$	X
2nd Accel / Decel Related Functions	A54	2nd Acceleration Time	0.1-3,000 [sec]	30.0 sec	\bigcirc
	A55	2nd Deceleration Time	0.1-3,000 [sec]	30.0 sec	\bigcirc
	A56	2 Level Accel. / Decel. Switching Method Setting	0 : Input from terminal [2CH] 1: Switching frequency setting from acc / dec1 to acc / dec2	0	X
	A57	Frequency Setting for Accel. / Decel. Time Switching in Acceleration ${ }^{2)}$	0.00 - Maximum frequency (A04) [Hz]	0.00 Hz	X
	A58	Frequency Setting for Accel. / Decel. Time Switching in Acceleration ${ }^{2)}$	0.00 - Maximum frequency (A04) [Hz]	0.00 Hz	X
	A59	Acceleration Pattern Selection	0: Linear / 1: S-curve / 2: U-curve	0	x
	A60	Deceleration Pattern Selection	0: Linear / 1: S-curve / 2: U-curve	0	X
Other Functions	A61	Voltage Input (O) Offset Setting	-10.0-10.0 [\%]	0.0	\bigcirc
	A62	Voltage Input (0) Gain Setting	0.0-200.0 [\%]	100.0	\bigcirc
	A63	Current Input (OI) Offset Setting	-10.0-10.0 [\%]	0.0	\bigcirc
	A64	Current Input (OI) Gain Setting	0.0-200.0 [\%]	100.0	\bigcirc
	A65	FAN Setting	0 : Always ON / 1: ON only when RUN	0	X
PID Control Setting	A70	PID Function Selection	0 : PID control disable 1: PID control enable 2: F / F control enable	0	X
	A71	PID Reference	0.00-100.0 [\%]	0.00 \%	\bigcirc
	A72	PID Reference Source	0: Keypad potentiometer 1: Control terminal input 2: Standard operator (A71) 3: Remote operator (communication)	2	X
	A73	PID Feed-back Source	0 : Current input (OI) 1: Voltage input (O)	0	X
	A74	PID P Gain	0.1-1,000 [\%]	100.0 \%	\bigcirc
	A75	PID I Gain	0.0-3,600 [sec]	1.0 sec	\bigcirc
	A76	PID D Gain	0.00-10.00 [sec]	0.00 sec	\bigcirc
	A77	PID Err Limit	0.0-100.0 [\%]	100.0 \%	\bigcirc
	A78	PID Output High Limit	-100.0-100.0 [\%]	100.0 \%	\bigcirc
	A79	PID Output Low limit	-100.0-100.0 [\%]	0.0 \%	\bigcirc
	A80	PID Output Reverse	0 : PID output reverse disable 1: PID output reverse enable	0	X
	A81	PID Scale Factor	0.1-1,000 [\%]	100.0 \%	x
	A82	Pre PID Frequency	0.00 - Max frequency (A04) [Hz]	0.00 Hz	X
	A83	Sleep Frequency	0.00 - Max frequency (A04) [Hz]	0.00 Hz	X
	A84	Sleep Delay Time	0.0-30.0 [sec]	0.0 sec	X
	A85	Wake up Frequency	Sleep frequency (A83) - Max frequency (A04) [Hz]	0.00 Hz	X

[^4]
- Expanded Function b Mode

Main Function	Code	Function Name	Description	Initial Data	Change Mode on Run
Restart Related Functions	b01	Instant Restart Selection	0 : Alarm after trip / 1: Start from 0 Hz when restart 2: Start from predefined frequency when restart 3: Stop by decelerating from predefined frequency when restart	0	X
	b02	Allowable Restart Time ${ }^{2)}$	$0.3-1.0 \mathrm{sec}(0.1 \mathrm{sec}$ unit)	1.0 sec	x
	b03	Instant Restart Waiting Time	$0.3-10.0 \mathrm{sec}$ (0.1 sec unit)	1.0 sec	X
Electric Thermal Related Functions	b04	Electronic Thermal Level	Set electronic thermal level in 20-120 \% of inverter rated current.	100.0 \%	X
	b05	Electronic Thermal Characteristic Selection	0 : Cooling fan is mounted on the motor shaft (self-cool) 1: Cooling fan is powered by independent source (forcedcool)	1	X
Overload Limiting Related Functions	b06	Overload and Over-voltage Limiting Mode	1: Overload, over-voltage restriction mode OFF 2: Overload limiting mode ON 3: Over-voltage limiting mode ON 4: Overload, over-voltage limiting mode ON	3	X
	b07	Overload Limiting Level Setting	Set overload limiting level in 20-200\% of rated current.	$\begin{aligned} & 120 \% \\ & 180 \%^{1)} \end{aligned}$	X
	b08	Overload Limiting Constant Setting	$0.1-10.0 \mathrm{sec}$ (0.1 unit)	1.0 sec	X
Other Functions	b09	Soft-lock Selection	0-3 (refer to instruction manual)	0	x
	b10	Start Frequnecy Adjustment	$0.50-10.00[\mathrm{~Hz}]$	0.50 Hz	X
	b11	Carrier Frequency	1.0-16.0 [kHz]	$2-5 \mathrm{kHz}{ }^{11}$	\bigcirc
	b12	Initialization Mode	0: Initialization of trip data / 1: Data initialization	0	X
	b13	Select Initial Value	0: for Korea / 1: for Europe / 2: for USA	0	X
	b14	RPM Conversion Factor Setting	0.01-99.99 (0.01 unit)	1.00	\bigcirc
	b15	Stop Key Enable	0 : Stop enable / 1: Stop disable	0	X
	b16	Stop Operation	0 : Restart from 0 Hz 1: Restart from predefined frequency	0	X
	b17	Communication	Set inverter communication code from 1-32 when connect inverter with external control equipment	1	X
	b18	Ground Fault Detection	0 : No detection	0.0	X
	b19	Speed Search Current Suppression Level	90-180 [\%]	100 \%	\bigcirc
	b20	Voltage Increase Level During Speed Search	10-300 [\%]	100%	\bigcirc
	b21	Voltage Decrease Level During Speed Search	10-300 [\%]	100 \%	\bigcirc
	b22	Speed Decrease Level During Speed Search	1-200 [\%] (operator display: $10-2,000$)	100 \% (1,000)	\bigcirc
	b23	Frequency Match Operation Selection	0: 0 Hz Starting operation 1: Frequency matching \& Start operation	0	\bigcirc
	b24	Fault Relay Configuration	0 : Inactive incase of low voltage failure 1: Active in case of voltage failure (Inactive in case of restart mode) 2: Active in case of all failure occurred indude LV failure 3: Active in case of voltage failure (In case of low voltage failure, automatic restart).	0	O
	b25	Stop Method Selection	0: A normal decelerating stop / 1: Free-run stop	0	\bigcirc
	b26	P Type Selection	$\begin{aligned} & \text { 0: Heavy duty 1: Normal duty } \\ & \text { (※ Accept for } 5.5 \mathrm{~kW} \uparrow \text {) } \end{aligned}$	0	X
	b27	Input Phase Loss Protection	0 : Input phase loss protection disable 1: Time setting: 1-100 [sec]	10	\bigcirc
	b28	Communication Time Out Setting	0-60 [sec] / 0: No detect time out	0	0
	b29	Communication Time Out Operation mode	0 : Always active / 1: Active in case of inverter is running	0	\bigcirc
	b30	Display Code Setting	1-13	1	0
	b31	2nd Communication Channel (option) Baud Rate Setting	1: 2,400 [bps] / 2: 4,800 [bps] 3: 9,600 [bps] / 4: 19,200 [bps]	3	\bigcirc
BRD Function	b32	BRD Selection	0 : Invalid: BRD doesn't operate 1: BRD operate during run 2: BRD operate during run \& stop	1	X
	b33	BRD using ratio	0.0-50.0 [\%]	10.0 \%	X

[^5]
Function Lists (055-220LF / 055-3500HF)

- Expanded Function C Mode

Main Function	Code	Function Name	Description		Initial Data	Change Mode on Run
Input Terminal Setting	C01	Intelligent Input Terminal 1 Setting	0: FW (forward direction) 1: RV (reverse direction) 2: CF1 (multi-speed 1) 3: CF2 (multi-speed 2) 4: CF3 (multi-speed 3) 5: CF4 (multi-speed 4) 6: JG (jogging run) 8: 2CH (2-level accel / decel command) 9: FRS (free-run stop)a 10: EXT (external trip) 11: USP (unattended start protection) 12: SFT (soft lock)	13: AT (analog input voltage / current transferring) 14: RS (reset) 15: STA (start) 16: STP (stop) 17: F/R (forward / reverse) 18: Remote Control UP 19: Remote Control DOWN 20: Local Keypad Operation (0 / R) 21: Local Terminal Input Operation (T / R) 22: PID Integral Reset (PIDIR) 23: PID Disable (PIDD)	0	X
	CO2	Intelligent Input Terminal 2 Setting	(Code) - Same as C01		1	X
	CO3	Intelligent Input Terminal 3 Setting	(Code) - Same as C01		2	x
	C04	Intelligent Input Terminal 4 Setting	(Code) - Same as C01		3	x
	C05	Intelligent Input Terminal 5 Setting	(Code) - Same as C01		13	x
	C06	Intelligent Input Terminal 6 Setting	(Code) - Same as C01		14	x
Input Terminal Status Setting	C07	Contact Setting of a / b of Input Terminal 1 (NO / NC)	Set contacts of a/b of intelligent input terminal 1 0 : a contacts (normal open) [NO] 1: b contacts (normal close) [NC]		0	X
	C08	Contact Setting of a / bof Input Terminal 2 (NO/NC)	Set contacts of a/b of intelligent input terminal 2		0	X
	C09	Contact Setting of a / bof Input Terminal 3 ($\mathrm{NO} / \mathrm{NC}$)	Set contacts of a/b of intelligent input terminal 3		0	X
	C10	Contact Setting of a / bof Input Terminal 4 (NO/NC)	Set contacts of a/b of intelligent input terminal 4		0	X
	C11	Contact Setting of a / bof Input Terminal 5 (NO / NC)	Set contacts of a/b of intelligent input terminal 5		0	x
	C12	Contact Setting of a/b of Input Terminal 6 (NO/NC)	Set contacts of a/b of intelligent input terminal 6		0	X
Output Terminal Function	C13	Intelligent Terminal Relay (Alarm) Output Setting	0 : RUN (Run signal) 1: FA1 (Frequency arrival signal: Command arrival) 2: FA2 (Frequency arrival signal: Setting frequency or more) 3: OL (Overload advance notice signal) 4: OD (Output deviation for PID control) 5: AL (Alarm signal)		5	X
	C14	Intelligent Terminal Relay (RN0-RN1) Output Setting			1	X
	C15	Intelligent Terminal Relay (RN2-RN3) Output Setting			0	X
	C16	Output Terminal RNO - RN1 a / Contact Setting	0: a contact (normal open) [NO]		0	X
	C17	Output Terminal RN2 - RN3 a / Contact Setting	1: b contact (normal close) [NC]		0	X
	C18	FM Monitor Signal Selection	0 : Output frequency monitor 1: Output current monitor 2: Output voltage monitor 3: Output wattage monitor		0	X
	C19	FM Output GAIN Adjustment	0-250.0 [\%]		100.0\%	\bigcirc
	C20	FM Output OFFSET Adjustment	-3.0-10.0[\%]		0.0\%	\bigcirc
	C21	Overload Advance Notice Signal Level Setting	0.1* (inverter rated current) - 2.0 * (inverter rated current)		100.0\%	x
	C22	Acceleration Arrival Signal Frequency Setting	0.00 - Max frequency (A04) [Hz]		0.00 Hz	X
	C23	Deceleration Arrival Signal Frequency Setting	0.00 - Max frequency (A04) [Hz]		0.00 Hz	X
	C24	PID deviation Level Setting	0.0-100.0 [\%]		10.0 \%	X
	C25	AMI Monitor Signal Selection	0 : Output frequency monitor 1: Output current monitor 2: Output voltage monitor 3: Output wattage monitor		1	X
	C26	AMI Output GAIN Adjustment	0-250.0 [\%]		100.0\%	\bigcirc
	C27	AMI Output OFFSET Adjustment	-99.9-100.0[\%]		0.0 \%	\bigcirc

- Motor Constant Setting H Mode

Main Function	Code	Function Name	Description	Initial Data	Change Mode on Run
Motor Constant Setting	H01	Auto-tuning Mode	0 : Auto-tuning OFF 1: Auto-tuning ON (non-ratational mode)	0	X
	H02	Selection Motor Constant	0 : Standard mode data 1: Auto-tuning data	0	X
	H03	Motor Capacity	2.2 L: $220 \mathrm{~V} / 2.2 \mathrm{~kW}$ $3.7 \mathrm{~L}: 220 \mathrm{~V} / 3.7 \mathrm{~kW}$ $5.5 \mathrm{~L}: 220 \mathrm{~V} / 5.5 \mathrm{~kW}$ $7.5 \mathrm{~L}: 220 \mathrm{~V} / 7.5 \mathrm{~kW}$ $11 \mathrm{~L}: 220 \mathrm{~V} / 11 \mathrm{~kW}$ $15 \mathrm{~L}: 220 \mathrm{~V} / 15 \mathrm{~kW}$ $18.5 \mathrm{~L}: 220 \mathrm{~V} / 18.5 \mathrm{~kW}$ $22 \mathrm{~L}: 220 \mathrm{~V} / 22 \mathrm{~kW}$ $30 \mathrm{~L}: 220 \mathrm{~V} / 30 \mathrm{~kW}$ $2.2 \mathrm{H}: 380 \mathrm{~V} / 2.2 \mathrm{~kW}$ $3.7 \mathrm{H}: 380 \mathrm{~V} / 3.7 \mathrm{~kW}$ $5.5 \mathrm{H}: 380 \mathrm{~V} / 5.5 \mathrm{~kW}$ $7.5 \mathrm{H}: 380 \mathrm{~V} / 7.5 \mathrm{~kW}$ $11 \mathrm{H}: 380 \mathrm{~V} / 11 \mathrm{~kW}$ $15 \mathrm{H}: 380 \mathrm{~V} / 15 \mathrm{~kW}$ $18.5 \mathrm{H}: 380 \mathrm{~V} / 18.5 \mathrm{~kW}$ $22 \mathrm{H}: 380 \mathrm{~V} / 22 \mathrm{~kW}$ $30 \mathrm{H}: 380 \mathrm{~V} / 30 \mathrm{~kW}$ $37 \mathrm{H}: 380 \mathrm{~V} / 37 \mathrm{~kW}$ $45 \mathrm{H}: 380 \mathrm{~V} / 45 \mathrm{~kW}$ $55 \mathrm{H}: 380 \mathrm{~V} / 55 \mathrm{~kW}$ $75 \mathrm{H}: 380 \mathrm{~V} / 75 \mathrm{~kW}$ $90 \mathrm{H}: 380 \mathrm{~V} / 90 \mathrm{~kW}$ $110 \mathrm{H}: 380 \mathrm{~V} / 110 \mathrm{~kW}$ $132 \mathrm{H}: 380 \mathrm{~V} / 132 \mathrm{~kW}$ $160 \mathrm{H}: 380 \mathrm{~V} / 160 \mathrm{~kW}$ 200 H: 380 V / 200 kW $220 \mathrm{H}: 380 \mathrm{~V} / 220 \mathrm{~kW}$ $250 \mathrm{H}: 380 \mathrm{~V} / 250 \mathrm{~kW}$ 280 H: 380 V / 280 kW $320 \mathrm{H}: 380 \mathrm{~V} / 320 \mathrm{~kW}$ $350 \mathrm{H}: 380 \mathrm{~V} / 350 \mathrm{~kW}$ $380 \mathrm{H}: 380 \mathrm{~V} / 375 \mathrm{~kW}$	-	X
	H04	Motor Pole Selection	2/4/6/8 poles (P)	4	X
	H05	Motor Rated Current	0.1-800.0 [A]	-	X
	H06	Motor No-load Current lo	0.1-400.0 [A]	-	X
	H07	Motor Rated Slip	0.01-10.0 [\%]	-	X
	H08	1st Resistor R1 for Motor Constant	Setting range: 0.001-30.00 Ω	-	X
	H09	Overloaded Inductance Lsig for Motor Constant	Setting range: $0.01-100.00 \mathrm{mH}$	-	X
	H10	R1 Auto-tuning Data for Motor Constant	Setting range: 0.001-30.00 8	-	X
	H11	Lsig Auto-tuning Data for Motor Constant	Setting range: $0.01-100.00 \mathrm{mH}$	-	X

[^6]
[^0]: ※ 1) Input signal terminals from 1 to 6 are contact "a"s. When you want to change those terminals to contact "b"s, configuration should be set in C07-C12
 2) USP: Protects inverter from restarting when power supply is on.
 3) Intelligent relay output terminal RN is "a" contact. When you use RN as "b" contact, please set it to C16, C17.
 4) Operator can select 'pre-warning alarm for overload' and 'arrival to the predefined frequency' signals with the intelligent output terminal.

[^1]: ※ The key arrangement of N700E's operator ($0.4-3.7 \mathrm{~kW}$) is different from the above. However, the function of key is the same as the above.

[^2]: ※ 1) This function depends on the machine and load conditions. Before using this function, user must perform verification test.

[^3]: ※ 1) Refer to user's manuals.

[^4]: ※ 1) LF model: 220 V, 055 HF - $1320 \mathrm{HF} / 075 \mathrm{HFP}$ - $1600 \mathrm{HFP}: 380 \mathrm{~V}$, $1600 \mathrm{HF}-3500 \mathrm{HF} / 2000 \mathrm{HFP}$ - $3800 \mathrm{HFP}: 440 \mathrm{~V}$
 2) If acceleration time and deceleration time is less than 1 second, an error occurs on the switching frequency.

[^5]: ※ 1) Refer to user's manuals.
 2) This function depends on the machine and load conditions. Before using this function, user must perform verification test.

[^6]: ADT Co., LTD
 Headoffice/Factory
 \#56, Beolmal-ro, Dongan-gu, Anyang-si, Gyeonggi-do, 14059 KOREA
 Tel: +82-31-459-5051
 Fax: +82-31-459-5053

